Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 39: 101076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38601120

RESUMO

Acute hepatic porphyrias are inherited metabolic disorders of heme biosynthesis characterized by the accumulation of toxic intermediate metabolites responsible for disabling acute neurovisceral attacks. Givosiran is a newly approved siRNA-based treatment of acute hepatic porphyria targeting the first and rate-limiting δ-aminolevulinic acid synthase 1 (ALAS1) enzyme of heme biosynthetic pathway. We described a 72-year old patient who presented with severe inaugural neurological form of acute intermittent porphyria evolving for several years which made her eligible for givosiran administration. On initiation of treatment, the patient developed a major hyperhomocysteinemia (>400 µmol/L) which necessitated to discontinue the siRNA-based therapy. A thorough metabolic analysis in the patient suggests that hyperhomocysteinemia could be attributed to a functional deficiency of cystathionine ß-synthase (CBS) enzyme induced by givosiran. Long-term treatment with vitamin B6, a cofactor of CBS, allowed to normalize homocysteinemia while givosiran treatment was maintained. We review the recently published cases of hyperhomocysteinemia in acute hepatic porphyria and its exacerbation under givosiran therapy. We also discuss the benefits of vitamin B6 supplementation in the light of hypothetic pathophysiological mechanisms responsible for hyperhomocysteinemia in these patients. Our results confirmed the importance of monitoring homocysteine metabolism and vitamin status in patients with acute intermittent porphyria in order to improve management by appropriate vitamin supplementation during givosiran treatment.

4.
Mol Cell Proteomics ; 22(1): 100451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423812

RESUMO

Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.


Assuntos
Domínios de Homologia de src , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Fosforilação
5.
J Clin Lipidol ; 16(3): 298-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379577

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is the most common genetic disorder associated with a high risk for premature atherosclerotic cardiovascular disease attributable to increased levels of LDL-cholesterol (LDL-C) from birth. FH is both underdiagnosed and undertreated. OBJECTIVE: We describe the clinical, biological, and genetic characteristics of 147 patients in France with clinical FH (including a group of 26 subjects aged < 20 years); we explore how best to detect patients with monogenic FH. METHODS: We retrospectively reviewed all available data on patients undergoing genetic tests for FH from 2009 to 2019. FH diagnoses were based on the Dutch Lipid Clinics Network (DLCN) scores of adults, and elevated LDL-C levels in subjects < 20 years of age. We evaluated LDLR, APOB, and PCSK9 status. RESULTS: The mutations of adults (in 25.6% of all adults) were associated with DLCN scores indicating "possible FH," "probable FH, and "definitive FH" at rates of 4%, 16%, and 53%, respectively. The areas under the ROC curves of the DLCN score and the maximum LDL-C level did not differ (p = 0.32). We found that the pediatric group evidenced more monogenic etiologies (77%, increasing to 91% when an elevated LDL-C level was combined with a family history of hypercholesterolemia and/or premature coronary artery disease). CONCLUSION: Diagnosis of monogenic FH may be optimized by screening children in terms of their LDL-C levels, associated with reverse-cascade screening of relatives when the children serve as index cases.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Criança , LDL-Colesterol , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/genética , Estudos Retrospectivos , Adulto Jovem
6.
Med Sci (Paris) ; 32(3): 290-6, 2016 Mar.
Artigo em Francês | MEDLINE | ID: mdl-27011248

RESUMO

In recent years, the understanding of the molecular mechanisms involved in platelet production (megakaryopoiesis) has extremely increased, thanks to the study of genetic diseases causing inherited thrombocytopenia. Among the wide variety of transmembrane receptors covering the platelet membrane, αIIbß3 integrin is the major one, allowing platelets to aggregate upon the occurrence of vascular breach. Platelet counts are usually normal in patients with αIIbß3 deficiency, suggesting that its role for normal platelet production and morphology is very limited. However, recently, new clinical observations of genetic diseases provided evidence against this hypothesis, bringing new data on the role of αIIbß3 integrin in defective megakaryopoiesis.


Assuntos
Transtornos Plaquetários/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Trombopoese/genética , Animais , Plaquetas/fisiologia , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...